Sunday, 6 September 2020

Use MinGW and FreeGlut to write graphics programs for Windows!!

 

 

MinGW install with GCC-G++ :

http://www.mingw.org/

Download FreeGlut version 2.8 +

 https://www.transmissionzero.co.uk/files/software/development/GLUT/older/

 Compile the examples using e.g :

 gcc -o stars.exe -Wall stars.c glut32.lib -lopengl32 -lglu32 -lfreeglut 


 https://www.opengl.org/archives/resources/code/samples/glut_examples/examples/examples.html

Wednesday, 5 August 2020

A Kalman Filter for Predicting Randomized Chaos

I downloaded from github this wonderfully elegant Kalman filter : https://github.com/hbcbh1999/kalman-filter Its a really nice and simple implementation using the equations you can find on wikipedia https://en.wikipedia.org/wiki/Kalman_filter It looks really awsome when applied to the Arneodo XS dimension Chaotic Attractor with added noise. KalmanFilteronChaos
Sneak a peak @ Shepherds latest works DarkSide - Chapter 2 - The Watchers


Or Read Kromos now
In [45]:
%matplotlib inline
import numpy as np
In [46]:
class KalmanFilter(object):
    def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None):

        if(F is None or H is None):
            raise ValueError("Set proper system dynamics.")

        self.n = F.shape[1]
        self.m = H.shape[1]

        self.F = F
        self.H = H
        self.B = 0 if B is None else B
        self.Q = np.eye(self.n) if Q is None else Q
        self.R = np.eye(self.n) if R is None else R
        self.P = np.eye(self.n) if P is None else P
        self.x = np.zeros((self.n, 1)) if x0 is None else x0

    def predict(self, u = 0):
        self.x = np.dot(self.F, self.x) + np.dot(self.B, u)
        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
        return self.x

    def update(self, z):
        y = z - np.dot(self.H, self.x)
        S = self.R + np.dot(self.H, np.dot(self.P, self.H.T))
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
        self.x = self.x + np.dot(K, y)
        I = np.eye(self.n)
        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), 
        	(I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)

        
In [47]:
def arneodo(x, y, z, a=-5.5, b=3.5, c=-1):
    '''
    Given:
       x, y, z: a point of interest in three dimensional space
       s, r, b: parameters defining the lorenz attractor
    Returns:
       x_dot, y_dot, z_dot: values of the lorenz attractor's partial
           derivatives at the point x, y, z
    '''
    x_dot = y
    y_dot = z
    z_dot = -a*x-b*y-z+c*(x**3)
    return x_dot, y_dot, z_dot


dt = 0.01
num_steps = 7000

# Need one more for the initial values
xs = np.empty(num_steps + 1)
ys = np.empty(num_steps + 1)
zs = np.empty(num_steps + 1)

# Set initial values
xs[0], ys[0], zs[0] = (0.1, 0, 0.1)

# Step through "time", calculating the partial derivatives at the current point
# and using them to estimate the next point
for i in range(num_steps):
    x_dot, y_dot, z_dot = arneodo(xs[i], ys[i], zs[i])
    xs[i + 1] = xs[i] + (x_dot * dt)
    ys[i + 1] = ys[i] + (y_dot * dt)
    zs[i + 1] = zs[i] + (z_dot * dt)
    
In [69]:
def example():
	dt = 1.0/60
	F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]]).reshape(3,3)
	H = np.array([1, 0, 0]).reshape(1, 3)
	Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 0.0]]).reshape(3,3)
	R = np.array([0.5]).reshape(1, 1)
      
	x = np.linspace(-10, 10, 100)
	measurements = xs + np.random.normal(0, 2, 7001)
#- (x**2 + 2*x - 2)
	kf = KalmanFilter(F = F, H = H, Q = Q, R = R)
	predictions = []

	for z in measurements:
		predictions.append(np.dot(H,  kf.predict())[0])
		kf.update(z)

	import matplotlib.pyplot as plt
	plt.plot(range(len(measurements)), measurements, label = 'Measurements')
	plt.plot(range(len(predictions)), np.array(predictions), label = 'Kalman Filter Prediction')
	plt.legend()
	plt.show()
    
In [70]:
if __name__ == '__main__':
    example()
In [63]:
H = np.array([1, 0, 0]).reshape(1,3)
In [33]:
H
Out[33]:
array([[1, 0, 0]])
In [24]:
dt = 1.0/60
F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]])
In [25]:
F
Out[25]:
array([[1.        , 0.01666667, 0.        ],
       [0.        , 1.        , 0.01666667],
       [0.        , 0.        , 1.        ]])
In [ ]: